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Abstract
There has been a spurt in structural neuroimaging studies of the effect of hearing

loss on the brain. Specifically, magnetic resonance imaging (MRI) and diffusion

tensor imaging (DTI) technologies provide an opportunity to quantify changes in

gray and white matter structures at the macroscopic scale. To date, there have been

32 MRI and 23 DTI studies that have analyzed structural differences accruing from

pre- or peri-lingual pediatric hearing loss with congenital or early onset etiology

and postlingual hearing loss in pre-to-late adolescence. Additionally, there have

been 15 prospective clinical structural neuroimaging studies of children and adoles-

cents being evaluated for cochlear implants. The results of the 70 studies are sum-

marized in two figures and three tables. Plastic changes in the brain are seen to be

multifocal rather than diffuse, that is, differences are consistent across regions

implicated in the hearing, speech and language networks regardless of modes of

communication and amplification. Structures in that play an important role in cog-

nition are affected to a lesser extent. A limitation of these studies is the emphasis

on volumetric measures and on homogeneous groups of subjects with hearing loss.

It is suggested that additional measures of morphometry and connectivity could

contribute to a greater understanding of the effect of hearing loss on the brain. Then

an interpretation of the observed macroscopic structural differences is given. This

is followed by discussion of how structural imaging can be combined with func-

tional imaging to provide biomarkers for longitudinal tracking of amplification.

This article is categorized under:

Developmental Biology > Developmental Processes in Health and Disease

Translational, Genomic, and Systems Medicine > Translational Medicine

Laboratory Methods and Technologies > Imaging
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1 | INTRODUCTION

Sensorineural hearing loss is the most common type of deafness resulting in degraded transmission of acoustic information
from the dysfunctional cochleae in the inner ears to the primary auditory cortex and secondary or association cortices in the
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brain (see Section 2). Such sensory deprivation results in a brain that is structurally different from one with normal hearing.
This difference is likely to be related to the degree of hearing loss as well as plasticity induced by the brain adapting to audi-
tory stimuli provided by a hearing aid or cochlear implant and/or visual stimuli provided by lipreading (or speechreading).
Further differences can accrue from developing cognitive strategies to compensate for the hearing loss. Thus, the deafened
brain has been both an attractive and challenging target of neuroimaging studies since the turn of the new millennium. These
studies have been fueled by advances in technologies such as positron emission tomography (PET), magnetic resonance imag-
ing (MRI), functional MRI (fMRI), diffusion tensor imaging (DTI), functional near-infrared spectroscopy (fNIRS), and corti-
cal auditory evoked potential (CAEP) to name but a few.

Figure 1 illustrates the different structural and functional neuroimaging modalities used to examine the brain. At the macro-
scopic scale, three types of brain tissues can be discerned in a 3D volume of about 250 × 250 × 200 (12.5 M) voxels of
1 mm3 resolution. These are gray matter, white matter, and cerebrospinal fluid. In general, gray matter is associated with corti-
cal regions and subcortical structures while white matter is associated with connections between cortical regions and subcorti-
cal structures. The gray matter within the cortical region contains mostly neuronal cell bodies and unmyelinated fibers while
subcortical regions contain deep gray nuclei and white matter contains axonal, usually myelinated, fibers.

The different tissue contrasts provided by MRI scans and the scalar images of fractional anisotropy, mean diffusivity, axial
and radial diffusivity derived from DTI scans make it possible to parcellate the brain into hundreds of regions (or groups of
regions called lobes) by mapping to atlases. The DTI scan can also generate a color map to indicate the 3D orientation of the
white matter connections. Finally, structural images can be registered in common coordinates with functional ones such as
fMRI, PET, CAEP, and fNIRS (described in Section 8) so that brain activity in different parts of the brain in response to
acoustic and visual stimuli can be studied.

With respect to the three magnetic resonance modalities that exploit the magnetic properties of water molecules in the
brain, fMRI has been by far the most popular imaging modality with about a hundred studies of brain activity in the deafened

FIGURE 1 Different image modalities stratified into structural (top row) and functional (bottom row) imaging. The different contrasts at the
macroscopic level of 1 mm3 provide information about three types of tissues: gray matter, white matter, and cerebrospinal fluid. An MRI scan provides a
view of the highly folded cortex (shown in light grayscale) and the underlying white matter (shown in bright grayscale). The scalar modalities (FA, MD,
and color map) derived from DTI scans provide different ways of looking at white matter structures. The red, green, and blue colors in the color map
indicate orientation in the left–right, anterior–posterior, and superior–inferior directions, respectively. The PET and fMRI scans provide a view of
responses to brain activity. CAEP and fNIRS brain activity are overlaid on MR scans for reference. Activity associated with the first positive peak in the
CAEP waveform (i.e., P1) is located in the primary auditory cortex contained within the Heschl's gyrus. (Reprinted with permission from Sharma et al.
(2016, fig. 2). Copyright 2016, Wolters Kluwer Health) Activity associated with speech is located in the superior temporal gyrus containing Heschl's
gyrus and planum temporale (often called the primary and secondary auditory cortex) on both sides (Reprinted with permission from Figure 2b in Sevy
et al. (2010). Copyright 2010, Elsevier). Mapping these scans to parcellated atlases provides an opportunity to perform quantitative analysis of structural
and functional data in common coordinates (Miller, Faria, Oishi, & Mori, 2013; Miller, Younes, & Trouvé, 2014; Mori, Oishi, Faria, & Miller, 2013)
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brain in response to visual and acoustic stimuli. In contrast, there have been fewer but an increasing number of MRI and DTI
studies examining structural properties of the deafened brain.

The review begins with a brief description of the deafened auditory pathway from the two cochleae to the brain. This is
followed by summaries of structural MRI, DTI, and clinical studies of people with hearing loss. The focus will be on
populations of pre- or peri- lingual hearing loss with congenital or early onset etiology and postlingual hearing loss in pre-to-
late adolescence whose pathologies are distinct from those who acquired hearing loss in adulthood. Next, a discussion on the
limited focus on volumetric measures suggests how additional measures of morphometry and connectivity widely used in
other structural neuroimaging studies could contribute to a greater understanding of the effect of hearing loss on the brain.
Then, an interpretation of the observed macroscopic structural differences is given. This is followed by a summary of how
structural imaging can be combined with functional imaging to provide potential biomarkers for longitudinal tracking of
amplification. The review concludes with a discussion of future directions and opportunities for expanding neuroimaging stud-
ies beyond those done so far.

2 | THE DEAFENED AUDITORY PATHWAY

Figure 2 is a simplified schematic illustration of the transmission of acoustic information along the auditory pathway from the
cochleae to the brain. Sensorineural hearing loss is attributed to missing or damaged hair cells in the cochlea in the inner ear
(e.g., Ashmore et al., 2010; Fettiplace & Kim, 2014). The result is the diminished ability of the cochlear hair cells to transduce
acoustic energy to electrical energy that is transmitted by nerves to the brain. Thus there is a cascade of atrophy resulting in
degraded transmission of acoustic information (e.g., Kral, Hartmann, Tillein, Heid, & Klinke, 2000; Saada, Niparko, &
Ryugo, 1996; Sanes & Kotak, 2011). Not even amplification provided by hearing aids is sufficient to provide neural activity
levels for optimal transmission particularly at high frequencies (e.g., Takesian, Kotak, Sharma, & Sanes, 2013). However, it is
clear that the high level stimulation rates provided by cochlear implants improve or restore integrity of neuroanatomical struc-
tures at different stages of the auditory pathway (e.g., Chen, Limb, & Ryugo, 2010; Muniak, Connelly, Tirko, O'Neil, &
Ryugo, 2013; O'Neil, Connelly, Limb, & Ryugo, 2011; Ryugo & Limb, 2009). Thus, sensory deprivation causes plastic
changes within the brain. These changes can be seen clearly at the microscopic scale albeit in post mortem human studies or
animal models. There have been few post mortem studies of the auditory cortex and understandably none of babies with hear-
ing loss (Huttenlocher & Dabholkar, 1997; Iyengar, 2012; Moore, 2002; Moore & Guan, 2001; Moore & Linthicum, 2007;
Pundir et al., 2012). So, animal models have been used to understand the nature of atrophy at different stages of the auditory
pathway (Butler & Lomber, 2013). Yet these microscopic studies have to be reconciled with structural neuroimaging studies
at the macroscopic scale in humans which are reviewed in the next three sections.

FIGURE 2 Simplified schematic illustration of transmission of acoustic information from the left and right cochleae to the brain. Note
information crosses over in the brainstem as well as in the cortex. Please refer to Figures 3 and 4 for association cortical regions such as planum
temporale. The white matter connections include those between primary and associated cortical regions and those that project back to other
structures via the thalamus and brainstem
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3 | MRI ANALYSIS OF GRAY MATTER AND WHITE MATTER STRUCTURES
IN PEOPLE WITH HEARING LOSS

MRI provides the opportunity to examine gray matter and white matter tissue in the brain at the macroscopic scale of 1 mm3.
Here gray matter characterizes cellular contents of cortical and subcortical structures, while white matter characterizes connec-
tions between cortical and subcortical structures. The different biophysical properties of the water molecules in gray matter
and white matter result in different responses to the magnetic field of the scanner. These differences provide the necessary
contrasts between gray matter and white matter in 3D volumetric images of the brain (Figure 1). Thus it is possible to quantify
morphometric properties of cortical and subcortical gray matter such as volume, surface area, and thickness.

Table 1 indicates there have been 32 structural MRI studies comparing populations of people with and without hearing
loss. Figure 3 provides a visualization of the location of the structures implicated in many of these studies. A few observations
can be made. First, there is a wide variation in the sample size with larger groups associate with large population centers
(Shibata, 2007). Second, these groups are by design homogeneous, that is, the subjects are native users of sign language and
generally have not been using hearing aids since infancy. Third, there is also a wide variation in the age in these groups and
only one study focused on babies who were being evaluated for cochlear implants (K. M. Smith et al., 2011). Fourth, while
morphometry analysis focused on mostly volumes of gray matter and white matter structures, nine measured cortical thickness
(Hribar et al., 2014; Kumar & Mishra, 2018; W. Li et al., 2013; J. Li et al., 2012; Pereira-Jorge et al., 2018; Ratnanather et al.,
2019; Shiell et al., 2016; Shiohama et al., 2019; Smittenaar et al., 2016) and one measured surface area (Kara et al., 2006).
Fifth, weak differences were observed in several structures. Prominent among these are Heschl's gyrus and planum temporale
considered as primary and secondary auditory cortices, respectively, which both lie on the dorsal (upper) surface of the supe-
rior temporal gyrus (see also Figure 1). Other affected structures included motor cortex; frontal cortex including Broca's area;
occipital cortex including early visual areas; corpus callosum; insula; fusiform; cerebellum. Sixth, some reported unilateral dif-
ferences; others reported that asymmetry was mainly preserved in the temporal lobe specifically Heschl's gyrus, planum
temporale, and superior temporal gyrus. The two gray matter connectivity studies (E. Kim et al., 2014; W. Li et al., 2015)
suggested increased connectivity between auditory and visual areas as well as weaker connectivity between regions such as
temporal and parietal (motor) ones.

Thus, MRI is potentially useful in providing quantitative differences in volumes of cortical regions that play an important
role in speech, language and hearing networks. But none of these studies have provided a deeper understanding of the biologi-
cal effects of hearing loss.

4 | DTI ANALYSIS OF WHITE MATTER STRUCTURES IN PEOPLE WITH
HEARING LOSS

DTI provides an opportunity to specifically examine white matter tissue in the brain at the resolution of 1 mm3. Here, white
matter tissue is characterized by the orientation of neural connections between the cortical and subcortical gray matter struc-
tures. DTI is a variant of MRI based on the diffusion of water molecules in white matter structures and provides another non-
invasive way of analyzing connections between brain structures. The 3 × 3 matrix representing the tensor model of water
diffusion at each voxel in the DTI scan yields an ellipsoid representing the orientation of the neural fibers within the voxel
from which eigenvalues are used to compute scalar quantities (Figure 1) such as fractional anisotropy, radial diffusivity, and
mean diffusivity. These measures reflect the biophysical properties of the neurons passing through the voxel. For example,
larger fractional anisotropy values indicate “dense axonal packing” (Feldman, Yeatman, Lee, Barde, & Gaman-Bean, 2010)
while larger values of radial diffusivity indicate “axonal degeneration” and mean diffusivity is sensitive to “cellularity”
(Tromp, 2016). The three corresponding eigenvectors are used to compute the color contrast map (Mori, Wakana, & Van
Zijl, 2004).

Table 2 indicates there have been 23 DTI studies comparing populations of people with and without hearing loss. Aside,
Table 2 is similar to a summary table (Tarabichi et al., 2018). Figure 3 provides a visualization of the location of the white
matter structures implicated in these studies. Again, a few observations can be made. First, with the exception of three studies
all focused on homogeneous groups of hearing loss. One exceptional group consisted of adults who started using sign lan-
guage in adolescence (Lyness et al., 2014), and two groups consisted of babies and young children prior to cochlear implanta-
tion (S. Wang et al., 2019; H. Wang et al., 2019). Second, there is again a wide variation in larger sample sizes from large
population centers. Third, the analyses are mostly confirmatory in that differences in scalar measures, that is, fractional anisot-
ropy (and sometimes radial diffusivity, mean diffusivity, and axial diffusivity) are seen in the temporal and occipital regions
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such as the acoustic radiation (or auditory tract), the optic radiation, superior temporal gyrus, corpus callosum, and with one
exception (Cheng et al., 2019) the longitudinal fasisculi which connect the auditory and language cortical regions. Fourth, the
two studies that focused on white matter connectivity were the ones at the scanner strength of 1.5 T, and one study not surpris-
ingly revealed correlations in thalamo-cortical connections with temporal, parietal, motor, somatosensory, frontal and occipital
lobes (Lyness et al., 2014).

Thus, DTI can be potentially useful in providing quantitative differences in connections between cortical and subcortical
regions affected by hearing loss. Also combining MRI and DTI could be one way to uncover how people with hearing loss
perform audio-visual integration tasks such as lipreading. To address this one would need to examine whether the long range
white matter optic radiation tract connecting the occipital lobe and thalamus overlaps with the short range white matter tracts
connecting the Heschl's gyrus and planum temporale (Figure 4).

5 | CLINICAL MRI AND DTI SCANS OF PEOPLE WITH HEARING LOSS

The advent of cochlear implants has dramatically changed the landscape of auditory habilitation and rehabilitation for more
than 350,000 children and adults with hearing loss worldwide (Zeng & Canlon, 2015). This achievement was recognized by
the 2013 Lasker-DeBakey Clinical Research Award (Hampton, 2013; Holmes, 2013; Niparko, 2013; Roland & Tobey, 2013;
Williams, 2013), the 2015 National Academy of Engineering Russ Prize (Clark, 2014; Hochmair, Hochmair, Nopp, Waller, &
Jolly, 2014; Merzenich, 2015; Wilson, 2014), and the 2018 Shambough Prize for the developers of the multichannel cochlear
implant.

Prior to surgery, patients have computer tomography or MRI scans of the temporal bones encasing the cochleae
(Schwartz & Chen, 2014; Sweeney et al., 2014; Teschner, Polite, Lenarz, & Lustig, 2013; Young, Ryan, & Young, 2014).
With respect to whole brain scans, Table 3 lists 15 reports of structural MRI and DTI studies. These studies are prospective
and thus the sample sizes are larger than those reported in research studies. Not surprisingly many studies involved pediatric
subjects if only to exclude the possibility of abnormalities in the central nervous system. In general, the observed white matter
changes are linked with immature myelination possibly due to abnormal neuronal processes that occur in the developing
embryo (Long, Wan, Roberts, & Corfas, 2018). But two studies correlated structural differences mainly in the connections
from thalamus to the frontal and temporal cortical lobes with positive outcomes. Due to the risk of device displacement, MRI
and DTI are contraindicated for people with cochlear implants. So it is imperative that quantitative analysis such as connectiv-
ity and topography be considered at baseline in future studies if reasonable imaging biomarkers for predicting positive out-
comes with cochlear implants are to be developed.

6 | MORPHOMETRY AND CONNECTIVITY OF STRUCTURES AFFECTED BY
HEARING LOSS

A concern about MRI and DTI studies so far is the focus on volume. Volumes for closed structures such as subcortical ones
can be interpreted. But that may be not the case for the cortical regions forming the highly folded ribbon that constitutes the
cortex (Figure 1). This raises three points. First, the above studies were based on whole brain analyses which revealed incon-
clusive information about the effect of hearing loss on brain structures. In contrast, a region of interest approach based on net-
works of hypothesized structures maybe more meaningful and sensitive (e.g., Giuliani, Calhoun, Pearlson, Francis, &
Buchanan, 2005) for generating biomarkers for positive outcomes for clinical procedures such as auditory training. This is
where information from functional neuroimaging studies of language, speech and hearing may be helpful in focusing on struc-
tures hypothesized to be affected by hearing loss (see Section 8). Second, volume should be viewed as the product of two
independent measures—surface area and thickness—to reflect the laminar structure of a cortical region (Dahnke & Gaser,
2018; Wagstyl & Lerch, 2018). This structure is brought about by the folding of the cortex to maximize cortical surface area
in a confined space. Each cortical region is composed of fundamental units called cortical columns (Rakic, 1995, 1988) that
traverse from the white matter to just beneath the skull. Also, each cortical region is composed of six layers which are stacked
on top of each other such that thin layers in one part of the region are thicker in another part via the equivolumetric model of
the cortex (Bok, 1929, 1959). Thus surface area and thickness may be associated with the distribution or density of cortical
columns and the total thickness of the six layers, respectively. So, decreased or increased cortical volume may be misleading.
In fact, decomposing volume into surface area and thickness was suggested for the primary auditory cortex in people with nor-
mal hearing by Meyer, Liem, Hirsiger, Jancke, and Hanggi (2014) who concluded that thickness and surface area should be
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quantified as separate measures. Also, given the possible effect of genetics on hearing loss (Dror & Avraham, 2009; R. J.
H. Smith, Shearer, Hildebrand, & Van Camp, 1993) specifically in the development of cortical columns, it may be best to ana-
lyze thickness and surface area separately (Panizzon et al., 2009; Winkler et al., 2010). A more recent study suggested that
cortical thickness may be an useful biomarker for identifying shape and location of the primary auditory cortex (Zoellner
et al., 2019). In addition, more realistic measures of cortical thickness can be developed via sophisticated equivolumetric
models for the cortex (Ratnanather et al., 2019; Younes, Kutten, & Ratnanather, in press). Third, in particular for subcortical
structures which have not been examined in great detail, it may be helpful to perform shape analysis (Faria et al., 2015; Miller
et al., 2013, 2014; Mori et al., 2013; Ratnanather, Liu, & Miller, 2020) given the role the thalamus plays in the auditory path-
way (Figure 2). Here, shape biomarkers are determined from computations of deformations of the structure relative to a tem-
plate. This allows for determining atrophied subregions of the structure. Such data could be useful in determining specific
pathways of degeneration between structures.

Furthermore, thickness may be correlated to brain activity in auditory cortical areas. First, acoustic fMRI studies have
shown increased neural activity in the primary auditory cortex (Patel et al., 2007; Tan et al., 2013). Second, given the impor-
tance of CAEP biomarkers in assessing neural activity with amplification via hearing aids or cochlear implants
(J. D. Campbell, Cardon, & Sharma, 2011; Sharma, Dorman, & Spahr, 2002), Liem, Zaehle, Burkhard, Jancke, and Meyer
(2012) showed that the first negative amplitude (N1) of CAEP waveform responses strongly correlated with cortical thickness
of the superior temporal gyrus which encompasses both the Heschl's gyrus and planum temporale (see Figure 1). Third, fol-
lowing PET studies gray matter density (Duncan, Gravel, Wiebking, Reader, & Northoff, 2013) and thickness (la Fougere
et al., 2011) were found to correlate with gamma-aminobutyric acid (GABA) binding within cortical regions. As GABA is the
primary inhibitory neurotransmitter in the brain and plays a crucial role in regulating neuronal activity, different rates of neural
activity from the thalamus to the auditory cortex may be attributed to differences in GABA density distribution (Takesian
et al., 2013) and possibly thickness.

To illustrate the possible benefits of analyzing cortical thickness, consider the Labeled Cortical Distance Mapping
(LCDM) technique (Miller et al., 2003; Miller, Massie, Ratnanather, Botteron, & Csernansky, 2000; Ratnanather et al., 2013,
2014). LCDM generates histograms of distances of gray matter voxels relative to the gray/white surface of the cortical region.
In turn this gives rise to laminar thickness derived as the 95th percentile and the corresponding volume (as the area under the
histogram). The shape of an individual LCDM for a cortical region is influenced by the folding of the region. A flat region
yields a “top-hat” LCDM while a folded region with variable thickness yields a “skewed” LCDM; similar profiles have been
observed for whole brains (Hutton, De Vita, Ashburner, Deichmann, & Turner, 2008). Together with the corresponding sur-
face areas, LCDMs can be analyzed in different ways via statistical tools (Ceyhan et al., 2011, 2013). Figure 5 shows individ-
ual LCDMs for the left and right Heschl's gyrus and planum temporale in a pilot study of five adults with hearing loss and
matched controls (Ratnanather et al., 2019). This study was challenging because more subjects could not be recruited having
acquired a cochlear implant by the time they were contacted. Nonetheless, the statistical power of pooled (grouped) analysis
(Ceyhan et al., 2011) can provide useful information with significant p-values from one-sided Kolmogorov–Smirnov tests
(�.0001) for the pooled LCDM for the adults with hearing loss to be the left of that for the control subjects. As discussed in
the next section, this suggests that in these auditory cortical areas there may be some similarities at smaller distances but dif-
ferences at larger distances which have interesting interpretations at the microscopic level.

It is worth noting that after using hearing aids since infancy, four of the five subjects with hearing loss now have cochlear
implants with excellent speech comprehension in quiet situations. This suggests the structural benefit of providing auditory
stimulus to the brain via hearing aids as soon as hearing loss is diagnosed. The difference in the shape of the LCDMs may
reflect the delayed maturation of synaptic activity (Huttenlocher & Dabholkar, 1997) followed by synaptic pruning (Selemon,
2013) in the developing brain. The pooled distributions suggest little differences in the left Heschl's gyrus which is associated
with temporal processing (Marie, Maingault, Crivello, Mazoyer, & Tzourio-Mazoyer, 2016) and some differences on the right
Heschl's gyrus which is associated with spectral processing (Marie et al., 2016). The former may be attributed to auditory
training used in listening and spoken language after early detection and intervention with hearing aids as infants while the lat-
ter may be attributed to high frequency hearing loss. By comparison, thicker visual cortical areas have been observed in people
blinded since infancy (J. Jiang et al., 2009).

As for DTI, two studies combined with functional studies of hearing loss have yielded interesting correlations. First, brain
waveform activity correlated with increases in fractional anisotropy measures of the brainstem specifically the inferior
colliculus (Reiman et al., 2009). Second, aerobic exercising by children with hearing loss resulted in improved executive func-
tion associated with reshaping white matter integrity in several structures (Xiong et al., 2018). DTI also offers the potential to
visualize the topography of structures such as the acoustic radiation and optic radiation (Figure 4) as well as other long range
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white matter tracts that play different but important roles in processing of speech and language (Friederici, 2012). Recently,
Dhir et al. (2020) showed that it was possible to generate the acoustic radiation in clinical scans as opposed to research scans
which require long scan times. For the same deaf adults studied in Figure 5, they confirmed the findings of Maffei (2017) who
suggested that lower fractional anisotropy values may be associated with poor myelination in the acoustic radiation which
may account for weaker neural transmission.

7 | INTERPRETING STRUCTURAL MRI AND DTI CHANGES CAUSED BY
HEARING LOSS

It would appear from MRI and DTI studies so far that subtle structural changes occur in the Heschl's gyrus and planum
temporale. These two structures are the primary and secondary auditory cortical regions, respectively. Granted that other struc-
tures particularly association cortical regions in the speech and language network are also affected, an interpretation of these
macroscopic changes with respect to the microscopic observations from animal models of hearing loss is now given.

One of the most advanced and well developed animal model of cortical activity stemming from cochlear implants has been
the cat (Kral, 2013; Raggio & Schreiner, 1994, 1999, 2003; Ryugo & Menotti-Raymond, 2012; Schreiner & Raggio, 1996).
Specifically, electrophysiological measurements across the six layers of the primary and secondary auditory cortices have rev-
ealed the effect of the absence of neural activity in the sensitive period of development (Eggermont & Ponton, 2003; Kral,
2013; Kral & Tillein, 2006; Kral & Eggermont, 2007; Kral, Tillein, Heid, Hartmann, & Klinke, 2005; Kral, Tillein, Heid,
Klinke, & Hartmann, 2006). Specifically, there is a delay in the synaptic activation of the upper (supragranular) layers and
virtual absence of activity in the lower/deep (infragranular) layers. The absence of activity in the lower/deep layers may be
attributed to incomplete development and alteration of information flow to and within the primary auditory cortex. While neu-
rons project from the upper layers of the primary area to the secondary areas, some project back to lower/deep layers of the
primary area. Thus the absence of activity in the lower/deep layers suggests that the primary auditory area is decoupled from
the secondary area, and the feedback loop is weakened. In this decoupling hypothesis (Kral et al., 2005) illustrated in

FIGURE 3 3D visualization of gray matter and white matter structures found to be different in people with hearing loss based on Table 1.
Please refer to Figure 2 for the possible roles these structures play in the auditory pathway. Upper left shows the lateral view of the left side of the
JHU-MNI-SS brain (Oishi et al., 2009); lower right shows the lateral view of the left medial structures adjacent to the mid-sagittal plane of the right
hemi-brain. The cortical structures (Pars Triangularis, Pars Opercularis, Motor Cortex, Superior Temporal Gyrus, Planum Temporale, Visual Cortex
and Cerebellum, Heschl's Gyrus, Insula, Fusiform Gyrus) and one white matter structure (corpus callosum) were obtained from the JHU-MNI-SS
labels and triangulated. CAWorks (www.cis.jhu.edu/software/caworks) was used for visualization
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Figure 6, the secondary area is no longer able to provide “top-down” cognitive processing which is helpful for comprehension
of spoken language (Kral & Eggermont, 2007). At the same time, the upper layers are unable to perform “bottom-up”
processing which is helpful for discerning phonemes that are the basic elements of spoken language.

The LCDMs of adults with hearing loss (Figure 5) who had been using listening and spoken language via hearing aids
since infancy suggest that the decoupling mechanism can be averted with consistent use of amplification. Indeed, the similari-
ties (with small variance) at smaller LCDM distances corresponding to the lower/deep layers suggest that sufficiently aided
adults with hearing loss can develop linguistic understanding and the larger differences (with larger variances) at LCDM dis-
tances corresponding to the upper layers suggest that these adults may be able to understand speech only in quiet. Thus the
shapes of LCDMs may reveal a little more information about the upper and lower layers than just the overall laminar thickness
that is computed from the distance between the gray/white and gray/inner surfaces. But for morphometry of the layers one
may need to consider equivolumetric models of cortical folding (Ratnanather et al., 2019; Younes et al., in press).

However, the weaker input from the thalamus to the auditory cortex may manifest in diverted inputs to other cortical areas
such as the parietal (motor) cortex as observed in 3D reconstruction of CAEP activity in late implanted children (lower right
panel in Figure 6 [fig. 3 of Gilley et al., 2008]). This suggests that hearing loss results in two-speed thalamic transmission
(Takesian et al., 2013). One conjectures that the demyelinated thalamo-parietal pathway cannot tolerate the high activity levels
stemming almost immediately after activation of the cochlear implant, thus enforcing the neural transmission along the acous-
tic radiation to the Heschl's gyrus (top and middle right panels in Figure 6 [fig. 2 of Gilley et al., 2008]).

However, more substantial quantitative analysis of morphometry and connectivity is needed to provide a more complete
model of the structure and functional relationship between cortical and subcortical structures in the deafened brain.

8 | COMBINING STRUCTURAL AND FUNCTIONAL IMAGING FOR
LONGITUDINAL TRACKING OF AMPLIFICATION

It is constructive to see how recent functional neuroimaging technologies could be combined with structural imaging to shed
light on the benefits of amplification on the deafened brain. The importance of functional changes accruing from amplification

FIGURE 4 3D visualization of connectivity between cortical and subcortical structures found to be different in people with hearing loss based
on Tables 2 and 3. Please refer to Figure 2 for the possible roles these structures play in the auditory pathway. The lateral view of the left side of the
gray/white surface of the JHU-MNI-SS template (Oishi et al., 2009) generated by FreeSurfer and transferred to native space (Fischl, 2012) is shown.
The cortical structures (Pars Triangularis, Pars Opercularis, Superior Temporal Gyrus, Planum Temporale, Heschl's Gyrus), one subcortical structure
(Thalamus), and the white matter Posterior Thalamic Radiation tract which contains the optic radiation were obtained from the JHU-MNI-SS labels
and triangulated. The other white matter fasisculi structures were obtained from the IXI template (Yushkevich, Zhang, Simon, & Gee, 2008) and
transferred via diffeomorphic mapping (Ceritoglu et al., 2009) of the IXI fractional anisotropy image to the corresponding JHU-MNI-SS image.
Short range fiber tracts from the Heschl's Gyrus to Planum Temporale generated by dynamic programming (M. Li, Ratnanather, Miller, & Mori,
2014; Ratnanather et al., 2013) are partially hidden. CAWorks (www.cis.jhu.edu/software/caworks) was used for visualization
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cannot be understated (J. D. Campbell et al., 2011; Cardin et al., 2013; Shiell, Champoux, & Zatorre, 2015). So changes in the
brain due to amplification should correlate morphometric and connectivity measures with data derived from CAEP (Gilley
et al., 2008; Liem et al., 2012), PET (Barone, Lacassagne, & Kral, 2013; Lazard, Lee, Truy, & Giraud, 2013; Liem, Hurschler,

TABLE 3 Preclinical MRI and DTI whole brain imaging studies

Studies Size Group Age Modality Results

Lapointe, Viamonte, Morriss, and
Manolidis (2006)

40 SNHL Pediatric T1 and T2 Some changes in T2 but eight had abnormalities
from myelination delays to migrational
anomalies

Trimble, Blaser, James, and Papsin
(2007)

92 Preop CI Pediatric FLAIR 32% abnormalities in TB; some subcortical signal
intensities discrepancies

Roche et al. (2010) 118 ANSD Pediatric MR 40% had brain abnormalities; 28% had CN
deficiencies

CT 16% had cochlear dysplasia

Hong, Jurkowski, and Carvalho
(2010)

57 Preop CI Pediatric MR 18% with white matter abnormalities (two had
postop delays in performance), no serious CNS
diseases

Chilosi et al. (2010) 80 SNHL Pediatric MR 48% with additional disabilities (cognitive,
behavioral–emotional and motor). 37 signal
abnormalities—brain malformations (46%) and
white matter abnormalities (54%)

Chang et al. (2012) 18 Preop CI Pediatric DT FA in Broca's, genu CC, auditory tract and MGN
correlated with auditory scores after CI

Mackeith, Joy, Robinson, and
Hajioff (2012)

158 Preop CI Pediatric and adults MR Detected abnormalities (n = 27.9%, missed by CT
in 6.3%) of which only 12.7% considered
significant

CT 6.3% only noncritical abnormalities in CT

Moon et al. (2012) 177 Preop CI Pediatric MR Children with no lesions (n = 150) performed
better than those with lesions

Proctor, Gawne-Cain, Eyles,
Mitchell, and Batty (2013)

51 Preop CI Pediatric and adults MR Five adults and 16 children—whole brain
abnormalities; 36 had at least one CI. Of 15 who
did not have CI, eight positive findings in whole
brain MRI

Jonas et al. (2012) 162 Preop CI Pediatric MR 30% had abnormalities mostly white matter
changes related to pre-existing medical
conditions

Z. Y. Jiang, Odiase, Isaacson,
Roland, and Kutz (2014)

188 Preop CI Adult MR 9% had cochlear pathway and white matter
abnormalities; in others, 65% had normal MRI
scans

X.-Q. Xu, Wu, Hu, Su, and Shen
(2015)

157 Preop CI Pediatric MR and CT White matter changes most common but effect on
CI minimal

Huang et al. (2015) 24 Preop CI Pediatric DT Lesser FA in TB, SON, IC, MGB, AR and
WMHG in 16 with CAP <6

Park, Chung, Kwon, and Lee (2018) 1 Preop CI Pediatric DT Less FA in WMHG, IFOF, UF, SLF and forceps
major only in age <4 years

Feng et al. (2018) 37 Preop CI Pediatric MR Auditory association and cognitive brain regions
which are unaffected by auditory deprivation
provide positive outcomes

Abbreviations: ANSD, auditory neuropathy spectrum disorder; AR, acoustic radiation; CAP, category of auditory performance; CC, corpus callosum; CI, cochlear
implant; CN, cochlear nerve; CNS, central nervous system; CT, computed tomography; DT, diffusion tensor; FA, fractional anisotropy; FLAIR, fluid-attenuated
inversion recovery; IC, inferior colliculus; IFOF, inferior fronto-occiptal fasciculus; MGB, medial geniculate body; MGN, medial geniculate nucleus; MR, magnetic
resonance; Preop, pre-operative; SLF, superior longitudinal fasciculus; SNHL, sensorineural hearing loss; SON, superior oliviary nucleus; T1/T2, MR-weighted image;
TB, temporal bone; UF, uncinate fasciculus; WMHG, white matter Heschl's gyrus.
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Jancke, & Meyer, 2014; Strelnikov et al., 2014), fMRI (Patel et al., 2007; Tan et al., 2013), and fNIRS (Lawler, Wiggins,
Dewey, & Hartley, 2015; Sevy et al., 2010).

In particular, functional neuroimaging should be combined with structural neuroimaging in longitudinal studies of amplifi-
cation or auditory training (Boothroyd, 2010). This could be achieved via MRI (Teschner et al., 2013) as well as DTI and rest-
ing state fMRI (Z. Li et al., 2015; B. Liu et al., 2015; Zhang et al., 2015) followed by one of PET, CAEP, or fNIRS. In the
case of cochlear implants, MRI, DTI and fMRI can only be done at baseline prior to surgery. A possible translational study
would be to find regional or subregional biomarkers in the superior temporal gyrus that correlate with phonetic processing of
speech with amplification (Boatman, 2004; Crinion, Lambon-Ralph, Warburton, Howard, & Wise, 2003; Mesgarani, David,
Fritz, & Shamma, 2014; Nourski & Howard 3rd, 2015).

The notion of a “sensitive” period in sensory neurodevelopment (Knudsen, 2004) alluded to in the previous section is
supported by CAEPs which are noninvasive electroencephalography measurements that track the maturation of the central

FIGURE 5 Labeled cortical distance map (LCDM) histograms are normalized frequencies of distances of gray matter 1 mm3 voxels relative to
gray/white cortical surfaces. Shown are individual LCDMs for the Heschl's gyrus and planum temporale in five adults with hearing loss (dashed)
and five matched controls (solid lines). Horizontal and vertical scales are from −1 to 5 mm and 0.0 to 0.6, respectively. p-Values from one-sided
Kolmogorov–Smirnov tests for the pooled cummulative distribution function (cdf) for the control subjects to be left of the pooled cdf for the
subjects with hearing loss were significant for all four structures (�.0001). For pooled LCDMs, see Ratnanather et al. (2019)
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auditory system via changes in latency and amplitude (Steinschneider, Nourski, & Fishman, 2013). The first positive peak
(P1), which is a summation of synaptic activities and neuronal conduction times as the signal travels from the ear to the pri-
mary auditory cortex, decreases with age in children with normal hearing (Eggermont & Ponton, 2003). Prompted by the sem-
inal work by Ponton et al. (1996), Sharma et al. (2002) performed what is now a landmark study of children with cochlear
implants. They observed that children with shortest period of deprivation (i.e., absence of auditory stimuli) of 3.5 years or less
had P1 latencies fall into the normal range about 6 months after implantation while those with deprivation periods of 7 years
or more had abnormal CAEPs. Similar observations were seen in children who used hearing aids consistently even before get-
ting a CI (J. D. Campbell et al., 2011). Also, the first negative peak (N1) which manifests itself post-adolescence in normal
hearing also occurs in people who had been using amplification since infancy (Sharma, Campbell, & Cardon, 2015).

Evidence suggests that P1 and N1 latencies reflect neural generators from thalamo-cortical projections to the primary audi-
tory cortex in the Heschl's gyrus and the secondary auditory cortex in the planum temporale, respectively (Liegeois-Chauvel,
Musolino, Badier, Marquis, & Chauvel, 1994) together with second order processing via a feedback loop between the primary
and secondary auditory cortices mentioned earlier (Kral & Eggermont, 2007). Gilley et al. (2008) observed bilateral activation
of the auditory cortical areas (superior temporal gyrus and inferior temporal gyrus) in normal hearing children. Children who
received cochlear implants at an early age showed activation in the auditory cortical areas (contralateral to the implant) which
were similar to those in normal hearing children while activation in late-implanted children was severely compromised. This
led to the decoupling hypothesis (Kral et al., 2005) which may be the basis of cross-modal plasticity via increased activity in
occipital and motor lobes. This notion of visual dominance in audio-visual integration and/or takeover of the auditory areas by
visual stimuli was suggested by Bavelier and Neville (2002). It is worth noting that Shiell et al. (2015) observed that consis-
tent use of hearing aids (i.e., amplification) resulted in reduced visual fMRI activity in contrast with those who did not use
hearing aids. These differences have also been observed in a recent fMRI study of different groups of people using hearing
aids or sign language (Cardin et al., 2013).

For people with hearing loss, fMRI is challenging because it is uncertain whether the subject would be able to comprehend
speech especially if the degree of hearing loss is profound given the noisy environment of the scanner. fMRI measures brain
activity detecting changes associated with increased blood flow into a cortical region that is responding to stimuli such as

FIGURE 6 Interpretation of Kral's decoupling hypothesis (Adapted from Kral and Eggermont (2007, fig. 3). Copyright 2007 Elsevier) based
on LCDM analysis in Figure 5. Similarities at smaller distances, that is, lower cortical layers may facilitate top-down processing, that is, contextual
or linguistic comprehension. This may be due to priming of the auditory pathway in childhood via amplification with hearing aids albeit at a lower
rate than with cochlear implants. However, this might be compromised by larger differences at larger distances, that is, upper cortical layers which
may be attributed to weaker thalamic inputs and make bottom-down processing, that is, comprehension of phonemes comprehension difficult and
complex. In turn, the inputs to the lower layers and thence the other cortical areas are weakened. Additional evidence of weaker thalamic
connections may manifest in those to other cortical areas such as the parietal cortex as might be in the case in the visualization of current density
reconstruction in late implanted children (lower right panel from fig. 3 in Gilley, Sharma, & Dorman (2008). Copyright 2008, Elsevier). This
suggests that hearing loss results in two-speed thalamic inputs (Takesian et al., 2013). One conjectures that amplification provided by hearing aids is
weaker than that provided by cochlear implants and further that the thalamo-parietal pathway cannot tolerate the high activity levels stemming
almost immediately after activation of the cochlear implant, thus forcing the neural activity to traverse along the acoustic radiation to the Heschl's
gyrus (top and middle right panels from fig. 2 in Gilley et al. (2008))
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speech. A few laboratories have been able to provide acoustic stimuli through tubephones and headphones customized to
deliver sound levels up to 130 db with low distortion, flat frequency response, reliable phase and noise cancellation (Hall &
Paltoglou, 2009). While there have been no reported studies of people with hearing loss with these customized devices,
another group has examined the use of fMRI in sedated babies prior to cochlear implantation (DiFrancesco, Robertson,
Karunanayaka, & Holland, 2013; Patel et al., 2007; Schmithorst et al., 2005). They demonstrated that levels of brain activity
as a reflection of hearing levels in the primary auditory cortex correlated strongly with the improvement in hearing after get-
ting a cochlear implant. More recently, the same group applied pattern classification methods to results of MRI and fMRI data
to make some predictions about speech and language outcomes in babies who then received a cochlear implant (Deshpande,
Tan, Lu, Altaye, & Holland, 2016; Tan et al., 2013). Others have observed brain activity at low frequencies in the auditory
cortex of people with partial hearing loss (Skarzynski et al., 2013) and positive changes in activation of the auditory cortex
after a period of using hearing aids (Hwang, Wu, Chen, & Liu, 2006). So it ought to be possible to adapt tubephones or head-
phones to create a hearing aid-like transfer function rather than a flat one (e.g., Palmer, Bullock, & Chambers, 1998) to exam-
ine how the brain functions with hearing aids.

Given the contraindication of ferromagnetic properties of cochlear implants with MRI scanners, PET has emerged as a tool
for longitudinal tracking of cochlear implants. PET measures metabolic processes in the brain so cortical regions that are
actively responding to stimuli such as speech have increased metabolism (D. S. Lee et al., 2001). Significant brain reorganiza-
tion in the first few months after cochlear implantation has been observed mainly in the left superior temporal gyrus and
Broca's area in the frontal cortex of subjects with postlingual hearing loss but not those with prelingual hearing loss (Petersen,
Gjedde, Wallentin, & Vuust, 2013). This suggests that prior experience of language which is the case in the former group is a
good indicator of positive outcomes. Further, visual cues may have a positive effect on auditory perception (Strelnikov et al.,
2014) which suggests audio-visual integration plays an important role in brain plasticity (R. Campbell, MacSweeney, & Woll,
2014). Earlier studies reviewed by Giraud and Lee (2007) suggested that resting metabolism can be a good measure of speech
performance after cochlear implantation and changes in PET activity reflect adaptation in higher order cognitive processes.

A major limitation of PET is the use of radioactive tracers which limits the ability to perform longitudinal analysis over a
short period especially when plasticity changes are significant. This could be overcome by fNIRS which has just emerged in
the past decade as a potentially useful tool (Sevy et al., 2010). Here as in fMRI, neuronal activity results in changes in levels
of oxygen in blood but with near-infrared light passing through brain tissue. It is now possible to assess activity in the auditory
cortex in response to speech (Lawler et al., 2015), differentiate from scrambled speech as a measure of outcome with amplifi-
cation (Pollonini et al., 2014), lipreading before and after cochlear implantation (Anderson, Lazard, & Hartley, 2017; Ander-
son, Wiggins, Kitterick, & Hartley, 2017) and speech and language processing (Bortfeld, 2019; McKay et al., 2016; Zhou
et al., 2018). Limitations such as sensitivity and accuracy of quantification of brain activity in deeper cortical regions (e.g., the
Heschl's Gyrus) may be resolved by newer optical measurements (Hasnain, Mehta, Zhou, Li, & Chen, 2018; Mehta
et al., 2017).

9 | FUTURE DIRECTIONS AND OPPORTUNITIES

This review has revealed limitations that make it difficult to make inferences about plastic changes in the brain caused by hear-
ing loss regardless of whether amplification was used or not. Several suggestions are offered that could increase the impact of
structural neuroimaging as a biomarker to aid the development of speech, language, and hearing.

Future studies should extend beyond homogeneous groups that in fact represent a very small segment of the spectrum of
people with hearing loss. In fact, the World Health Organization estimated that 15% of the world's population has a hearing
loss of which a third, that is, 360 million, have a disabling hearing loss (World Health Organization, 2013) ranging from par-
tial to profound. Further, the World Federation of the Deaf estimates that 70 million use sign language (http://wfdeaf.org/faq).
This means that these homogeneous groups characterize just 6% of people with hearing loss. Only one neuroimaging study
considered this limitation and attempted to provide new answers (Olulade et al., 2014).

Studies should go beyond the structures other than the ones known to play an important role in speech, language, and hear-
ing. Granted that hearing loss has broad consequences for the developing and maturing brain, it is important to discern the dif-
ferent forms of plasticity in the brain. Use of more quantitative and sophisticated analyses of morphometry and connectivity
measures could go a long way to deepen understanding of the biological substrates of plasticity. Further, these methods could
be useful for analysis of structural neuroimaging of other types of hearing loss such as aged-induced hearing loss (Eckert
et al., 2013; Eckert, Cute, Vaden, Kuchinsky, & Dubno, 2012; F. R. Lin et al., 2014; Peelle, Troiani, Grossman, & Wingfield,
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2011; Vaden, Kuchinsky, Ahlstrom, Dubno, & Eckert, 2015), unilateral hearing loss (Rachakonda, Shimony, Coalson, &
Lieu, 2014; C. M. Wu, Ng, & Liu, 2009; Yang et al., 2014) and tinnitus (Husain et al., 2011).

Studies should also consider federating neuroimaging datasets by archiving data from all over the world. The sample sizes
given in Tables 1 and 2 are relatively small compared to those in recorded in other structural neuroimaging studies. On the
other hand, the wider spectrum of people with hearing loss calls for alternative and more sophisticated statistical tests to deal
with sizes and heterogeneity of these samples; for example, snowball sampling (Cardin et al., 2013) or pooling (Ceyhan et al.,
2011). Federation is becoming common in neuroimaging projects such as schizophrenia (Alpert, Kogan, Parrish, Marcus, &
Wang, 2015) and the ENIGMA project for many neurodegeneration and neurodevelopmental diseases (Thompson et al.,
2014). This is where “Big Data” analytical tools such as data mining (Ramos-Miguel, Perez-Zaballos, Perez, Falconb, & Ram-
osb, 2014; Tan et al., 2013) could be used to uncover potential biomarkers for positive outcomes for amplification. Combining
such data will require techniques such as diffeomorphometry (Miller et al., 2014; Ratnanather et al., 2020) to map imaging
data to common coordinates for analysis and comparison. Personalized inference of clinical and behavioral data could then be
achieved (Faria et al., 2015; Miller et al., 2013; Mori et al., 2013). A significant step in that direction was taken by Feng et al.
(2018) who used machine learning methods to find that neural structures unaffected by auditory deprivation were best predic-
tors for outcomes with cochlear implants in young children.

10 | CONCLUSION

Plastic changes in the brain due to pre- or peri-lingual pediatric hearing loss with congenital or early onset etiology and post-
lingual hearing loss in pre-to-late adolescence are seen to be multifocal rather than diffuse. Differences are consistent across
most of the regions implicated in the hearing, speech and language networks in the brain (Friederici, 2012) regardless of
modes of communication and amplification, be these via listening and spoken language or sign language. To a lesser extent,
structures in networks that play an important role in cognition are affected (X. M. Xu et al., 2019b). Quantitatively differences
are subtle for some structures and variable for other structures. That said, it is remarkable that the asymmetry properties of the
structures in the hearing, speech and language pathways are mostly preserved. Yet, little is known about the deeper underlying
biological effects of hearing loss on the brain. For example, one asks what are the structural consequences of limited acoustic
stimuli that belies demyelination (Long et al., 2018) and increasing fatigue and effort associated with listening (Willis, 2018).
If the classic tensegrity model of brain connectivity by Van Essen (1997) holds, then one may expect to see weaker tension in
the white matter fibers connecting cortical regions responsible for auditory function. In turn, the weaker tension could result in
abnormal cortical folding with weaker mechanical forces upon the thicker and shallower sulcal fundi (cortical folds or val-
leys). This will have mechanical and morphological effect on the deep layers that have been observed to be inactive in animal
models of auditory deprivation. Such an interpretation remains to be tested at the macroscopic level. However, new methods
that are capable of analyzing properties of the acoustic radiation, optic radiation, thalamo-cortical, and cortico-cortical connec-
tions may contribute to a greater understanding of the anatomical pathologies of hearing loss in the brain. Thus there is a need
for clinical neuroimaging to uncover biomarkers for longitudinal tracking and monitoring of progress with amplification pro-
vided by either cochlear implants or hearing aids.
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